<sub id="i0hh4"><td id="i0hh4"><div id="i0hh4"></div></td></sub>
  • <tr id="i0hh4"><source id="i0hh4"></source></tr>

        1. 高中數學說課稿

          時間:2025-08-12 15:35:24
          高中數學說課稿范文集錦八篇

          高中數學說課稿范文集錦八篇

          作為一名辛苦耕耘的教育工作者,就不得不需要編寫說課稿,通過說課稿可以很好地改正講課缺點。寫說課稿需要注意哪些格式呢?下面是小編精心整理的高中數學說課稿8篇,僅供參考,大家一起來看看吧。

          高中數學說課稿 篇1

          一、教材分析

          1、從在教材中的地位與作用來看

          《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養。

          2、從學生認知角度看

          從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

          3、學情分析

          教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。

          4、重點、難點

          教學重點:公式的推導、公式的特點和公式的運用。

          教學難點:公式的推導方法和公式的靈活運用。

          公式推導所使用的"錯位相減法"是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點。

          二、目標分析

          知識與技能目標:

          理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題。

          過程與方法目標:

          通過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉

          化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

          情感與態度價值觀:

          通過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之間等價轉化和理論聯系實際的辯證唯物主義觀點。

          三、過程分析

          學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的形成與發展過程,結合本節課的特點,我設計了如下的教學過程:

          1、創設情境,提出問題

          在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學家計算,結果出來后,國王大吃一驚。為什么呢?

          設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的積極性。故事內容緊扣本節課的主題與重點。

          此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥粒總數。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。

          設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的"無用功",急急忙忙地拋出"錯位相減法",這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙。同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆、

          2、師生互動,探究問題

          在肯定他們的思路后,我接著問:1,2,22,.....,263是什么數列?有何特征?應歸結為什么數學問題呢?

          探討1:,記為(1)式,注意觀察每一項的特征,有何聯系?(學生會發現,后一項都是前一項的2倍)

          探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發現?

          設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變"加"為"減",在教師看來這是"天經地義"的,但在學生看來卻是"不可思議"的,因此教學中應著力在這兒做文章,從而抓住培養學生的辯證思維能力的良好契機。

          經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

          設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心。

          3、類比聯想,解決問題

          這時我再順勢引導學生將結論一般化,

          這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。

          設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。

          對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時是什么數列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎。)

          再次追問:結合等比數列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)

          設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力。這一環節非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。

          4、討論交流,延伸拓展

          在此基礎上,我提出:探究等比數列前n項和公式,還有其它方法嗎?我們知道,

          那么我們能否利用這個關系而求出sn呢?根據等比數列的定義又有,能否聯想到等比定理從而求出sn呢?

          設計意圖:以疑導思,激發學生的探索欲望,營造一個讓學生主動觀察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實就是關于的一個遞推式,遞推數列有非常重要的研究價值,是研究性學習和課外拓展的極佳資源,它源于課本,又高于課本,對學生的思維發展有促進作用、

          5、變式訓練,深化認識

          首先,學生獨立思考,自主解題,再請學生上臺來幻燈演示他們的解答,其它同學進行評價,然后師生共同進行總結。

          設計意圖:采用變式教學設計題組,深化學生對公式的認識和理解,通過直接套用公式、變式運用公式、研 ……此處隱藏11722個字……操作中體會折痕是否平分三角形的內角,之后分小組折疊銳角三角形、直角三角形、鈍角三角形的角平分線,小組交流,歸納三角形角平分線的特點,再讓他們敘述小組所探究的結論,師加以適當修正與鼓勵。從而很好的培養了學生的動手操作和探究能力。

          5、練習鞏固,深化拓展

          先以搶答形式解決問題1、問題2,讓學生利用所學知識,進一步鞏固三角形的高、中線、角平分線的有關概念,提高學生獨立解決問題的能力。拓展練習是一個綜合性題目,一方面引導學生從復雜圖形中抽取基本圖形,從而加強學生對概念的掌握,進一步發展學生的思維,拓展能力,運用以增強直觀性。

          6、感悟與收獲:進一步提升學生對知識點理解。

          7、作業布置:讓學生運用數學知識解決生活實例,是讓學生感受數學和生活的聯系及數學在生活中的重要性,充分體現數學于生活又還原于生活。

          高中數學說課稿 篇8

          各位老師:

          大家好!我叫***,來自**。我說課的題目是《概率的基本性質》,內容選自于高中教材新課程人教A版必修3第三章第一節,課時安排為三個課時,本節課內容為第三課時。下面我將從教材分析、教學目標分析、教法分析、教學過程分析四大方面來闡述我對這節課的分析和設計:

          一、教材分析

          1、教材所處的地位和作用

          本節課主要包含了兩部分內容:一是事件的關系與運算,二是概率的基本性質,多以基本概念和性質為主。它是本冊第二章統計的延伸,又是后面"古典概型"及"幾何概型"的基礎。在整個教學中起到承上啟下的作用。同時也是新課改以來考查的熱點之一。

          2、教學的重點和難點

          重點:概率的加法公式及其應用;事件的關系與運算。

          難點:互斥事件與對立事件的區別與聯系

          二、教學目標分析

          1.知識與技能目標

          ⑴了解隨機事件間的基本關系與運算;

          ⑵掌握概率的幾個基本性質,并會用其解決簡單的概率問題。

          2、過程與方法:

          ⑴通過觀察、類比、歸納培養學生運用數學知識的綜合能力;

          ⑵通過學生自主探究,合作探究培養學生的動手探索的能力。

          3、情感態度與價值觀:

          通過數學活動,了解教學與實際生活的密切聯系,感受數學知識應用于現實世界的具體情境,從而激發學習數學的情趣。

          三、教法分析

          采用實驗觀察、質疑啟發、類比聯想、探究歸納的教學方法。

          四、教學過程分析

          1、創設情境,引入新課

          在擲骰子的試驗中,我們可以定義許多事件,如:

          c1=﹛出現的點數=1﹜,c2=﹛出現的點數=2﹜

          c3=﹛出現的點數=3﹜,c4=﹛出現的點數=4﹜

          c5=﹛出現的點數=5﹜,c6=﹛出現的點數=6﹜

          D1=﹛出現的點數不大于1﹜D2=﹛出現的點數大于3﹜

          D3=﹛出現的點數小于5﹜,E=﹛出現的點數小于7﹜

          f=﹛出現的點數大于6﹜,G=﹛出現的點數為偶數﹜

          H=﹛出現的點數為奇數﹜

          ⑴以引入例中的事件c1和事件H,事件c1和事件D1為例講授事件之的包含關系和相等關系。

          ⑵從以上兩個關系學生不難發現事件間的關系與集合間的關系相類似。進而引導學生思考,是否可以把事件和集合對應起來。

          「設計意圖」引出我們接下來要學習的主要內容:事件之間的關系與運算

          2、探究新知

          ㈠事件的關系與運算

          ⑴經過上面的思考,我們得出:

          試驗的可能結果的全體←→全集

          ↓↓

          每一個事件←→子集

          這樣我們就把事件和集合對應起來了,用已有的集合間關系來分析事件間的關系。

          集合的并→兩事件的并事件(和事件)

          集合的交→兩事件的交事件(積事件)

          在此過程中要注意幫助學生區分集合關系與事件關系之間的不同。

          (例如:兩集合A∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發生,表示或者事件A發生,或者事件B發生。)

          「設計意圖」為更好地理解互斥事件和對立事件打下基礎,

          ⑵思考:①若只擲一次骰子,則事件c1和事件c2有可能同時發生么?

          ②在擲骰子實驗中事件G和事件H是否一定有一個會發生?

          「設計意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來將要學習的互斥事件和對立事件,讓學生從實際案例中體驗它們各自的特征以及它們之間的區別與聯系。

          ⑶總結出互斥事件和對立事件的概念,并通過多媒體的圖形演示使學生們能更好地理解它們的特征以及它們之間的區別與聯系。

          ⑷練習:通過多媒體顯示兩道練習,目的是讓學生們能夠及時鞏固對互斥事件和對立事件的學習,加深理解。

          ㈡概率的基本性質:

          ⑴回顧:頻率=頻數/試驗的次數

          我們知道當試驗次數足夠大時,用頻率來估計概率,由于頻率在0~1之間,所以,可以得到概率的基本性質、

          (通過對頻率的理解并結合前面投硬幣的實驗來總結出概率的基本性質,師生共同交流得出結果)

          3、典型例題探究

          例1一個射手進行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?

          事件A:命中環數大于7環;事件B:命中環數為10環;

          事件c:命中環數小于6環;事件D:命中環數為6、7、8、9、10環、

          分析:要判斷所給事件是對立還是互斥,首先將兩個概念的聯系與區別弄清楚

          例2如果從不包括大小王的52張撲克牌中隨機抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問:

          (1)取到紅色牌(事件c)的概率是多少?

          (2)取到黑色牌(事件D)的概率是多少?

          分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對立事件,因此P(D)=1—P(c).

          「設計意圖」通過這兩道例題,進一步鞏固學生對本節課知識的掌握,并將所學知識應用到實際解決問題中去。

          4、課堂小結

          ⑴理解事件的關系和運算

          ⑵掌握概率的基本性質

          「設計意圖」小結是引導學生對問題進行回味與深化,使知識成為系統。讓學生嘗試小結,提高學生的總結能力和語言表達能力。教師補充幫助學生全面地理解,掌握新知識。

          5、布置作業

          習題3、1A1、3、4

          「設計意圖」課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。

          五、板書設計

          概率的基本性質

          一、事件間的關系和運算

          二、概率的基本性質

          三、例1的板書區

          例2的板書區

          四、規律性質總結

          《高中數學說課稿范文集錦八篇.doc》
          將本文的Word文檔下載到電腦,方便收藏和打印
          推薦度:
          點擊下載文檔

          文檔為doc格式

          曰批全过程免费动态图